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The break-up of axisymmetric liquid sheets 
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(Received 10 November 1969 and in revised form 29 January 1970) 

The break-up mechanism of axisymmetric liquid sheets formed by the im- 
pingement of two co-axial jets has been examined. Three break-up regimes in 
the Weber number range from 100 to 3 x lo4 are reported. In  the first break-up 
regime, droplets are formed through successive mergings of liquid beads along 
the nearly circular periphery of the sheet. The formation of beads is caused by 
Rayleigh instability. In  the transition regime, Taylor’s cardioid wave pattern 
prevails in the first half of this regime, while the sheet begins to flap in the second 
half. 

In  the second break-up regime, antisymmetric waves on the sheet grow 
radially. A semi-empirical equation has been deduced to predict the break-up 
radius of the sheet. The motion of an axisymmetric vibrating membrane with 
radially decreasing thickness has been studied to include Helmholtz instability 
as an analogue of the wave motion of the expanding circular sheet. A distorted 
progressive wave equation has been solved by the WKBJ method to indicate the 
effect of cylindrical geometry. The calculated wave speed agrees fairly well with 
experimental data at low Weber numbers. 

1. Introduction 
A general increasing interest in the behaviour of ‘water bells’ is evident in 

today’s fluid mechanics literature. The thinning sheets that result when a jet 
strikes an obstacle or another jet, and the sprays that they ultimately break 
into, both have broad application. They are usedfor droplet controlin combustion 
processes, and for their grace and beauty in fountains; they are used in garden 
sprinklers and for the application of a uniform coating. 

Since Savart (1833) first observed the break-up radii of flat sheets that spread 
from two equal co-axial colliding jets over a century ago, there was a steady trickle 
of work on their behaviour, until Taylor (1959, 1960) produced definitive papers 
on the subject. Taylor defined the basic linear wave motions within the sheehs, 
and wrote a general equation for the form of symmetrical sheets subject to gravity 
and pressure. A renewed interest in the problem followed Taylor’s paper, and 
bibliographies of recent work now tend to be quite lengthy (see e.g. Huang 1967). 

Recent work has resulted in descriptions of the shape of water bells under a 
variety of conditions; it has shown how the velocity deviates from radial uni- 
formity under different circumstances ; and it has been addressed to describing 

t Present address : Engineering Research Department, Minnesota Mining and Manu- 
facturing Company, St Paul, Minnesota 55112. 
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the sprays that occur after break-up. Much work has also been directed toward 
predicting the mechanisms of break-up in the spreading sheet but this has been 
less than conclusive in many respects. Dumbrowski, Fraser and their co-workers 
(e.g. 1962, 1963, 1964) have made significant studies which serve to expose wave 
motions of high velocity sheets, and which clarify the aerodynamic contribution 
of the surrounding air. Little has been done with slower moving sheets since the 
work of Savart (1833), and Bond (1935), and quantitative measurements of wave 
motions in the high-speed region are generally sparse. 

The present study is an essentially experimental attempt to expand our under- 
standing of break-up over several regimes that occur as the sheet velocity is 
increased. The effects of cylindrical geometry on wave motion of the sheet, will 
also be examined using a linearized wave theory. 

2. Experiment 
Figure 1 shows the basic apparatus that we used to generate flat symmetrical 

sheets. Tap water was supplied at approximately 60 O F  to a water bell maker 
consisting of 2# in. I.D. brass tube in which were affixed opposing, adjustable, 
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, Thermometer 
Air relief 
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water *- adjusting Pressure 
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FIGURE I. Schematic diagram of apparatus and photographic arrangement. 

standard ASME orifices ranging from ?= to in, in diameter. The jets passed 
into an air environment at a pressure of approximately 13.4 psia. Instrumenta- 
tion provides for measurement of the jet velocity and for photographic observa- 
tion of the sheets. Detailed descriptions of the experiments made on this apparatus 
are given by Huang, and we shall not repeat them here. The error of the photo- 
graphic observations is intrinsically small, and its approximate magnitude 
will be evident from the photographs themselves. The exposure time of the 
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photographs ranges from 1 ps to 3 ps. High-speed motion pictures were taken at  
6000 pictures per second. 

The effect, of internal viscous shear upon the liquid velocity in axisymmetric 
sheets is generally negligible (Lienhard & Newton 1966). The skin friction caused 
by the still air adjacent to the moving liquid sheet is also very small (Taylor 
1959). Therefore, the radial velocity, U ,  throughout the expanding circular sheet 
will be assumed as constant in the following analysis. 

3. The break-up regimes 
Figure 2 presents the measured break-up radii of sheets in dimensionless form. 

The break-up radius rb is non-dimensionalized with the orifice radius i d .  The 
non-dimensional velocity has been squared so that it takes the form of a Weber 
number, We = p U 2 d / a ,  where p is the liquid density and B is the surface tension. 
The photographs, typical examples of which are shown in figure 3 (plate I ) ,  
illustrate the characteristics of the sheets at  various Weber numbers. 

In  figure 2, we can readily see that the liquid sheets have three distinct break- 
up regimes. The first portion from We 2: 100 to 500 represents a stable liquid 
sheet? regime. The liquid sheet has a nearly perfect circular edge. Figure 3 ( a )  
shows a liquid sheet (We = 360) in this regime; liquid beads are formed along the 
circular periphery. Our first high-speed motion pictures of the liquid sheet in this 
regime have shown that these beads moved along the periphery and became larger 
beads which are finally detached from the periphery to form droplets. The second 
portion from We N 500 to 2000 represents a transition regime. From We 21 500 
to 800, the liquid sheet forms a cusp-shaped edge. An example of a liquid sheet 
in this regime is shown in figure 3 (b )  (We = 580). Figure 3 ( c )  is an enlarged view 
of a portion of figure 3 (b ) ,  in which a liquid bead detached from the peak of a cusp 
edge is clearly indicated. In  the critical zone We 2: 800 to  1000, liquid sheets 
possess a maximum break-up radius. From We 2: 1000 to 2000, the cusps on the 
edge of the liquid sheet diminish in size and the edge remains fairly circular; 
large-amplitude, antisymmetric wave$ fronts can be seen. Figures 3 ( d )  
(We = 880) and 3 ( e )  (We = 1060) show that small perturbations appear in 
portions near t,he edge of circular sheets. 

The third portion, from We N 2000 to 3 x lo4, represents an unstable liquid 
sheet Q regime. Large-amplitude antisymmetric waves on the sheet are pro- 
nounced; the sheets flap with a flaglike motion. Figures 3 (f) (We = 2080), 
3 (9)  (We = 4450), 3 (h) (We = 8450) and 3 (i) (We = 31,400) show the progressive 
violence of perturbations on the liquid sheet as the Weber number increases. 
Steep wave fronts can be seen in all these figures, except figure 3 ( i ) ,  in which the 
disturbance is so large that no clear wave pattern can be observed. However, 

t A ‘stable liquid sheet’ in this paper means that the sheet moves smoothly. Any 

$ Waves in which the displacement of opposite surfaces of the sheet are in phase. (See 

0 An ‘unstable liquid sheet’ in this paper means that the sheet flaps with a flaglike 

disturbance on the sheet will be small and will decay radially. 

Taylor 1959.) 

motion. Any disturbance on the sheet will grow radially. 
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a complete disintegrated edge of the sheet can still be determined after observing 
several photographs taken at the same Weber number. Five high-speed motion 
pictures are taken in this regime to measure the wave speed which will be dis- 
cussed later in $ 4 .  These three distinct regimes are designated as the break-up 
regime I, the transition regime, and the break-up regime 11, respectively. 
The analysis of each regime will be presented in the subsequent sections. 

(i) F i rs t  break-up regime 

In the first break-up regime, the liquid sheet is assumed free from any external 
disturbances. With this assumption, the inertia force exerted radially outward 
on the edge of the circular sheet is balanced by the inward radial and circumferen- 
tial surface forces. The force balance on the edge of the circular liquid sheet is 
then 

(1) 
0- 

QpU = 2(2nRo)+- (277Rhb), R 
where R designates the maximum radial distance to which the moving sheet 
can extend, and h, is the thickness at  the edge of the circular sheet. The purpose 
of including the last term in (1) is to find out the approximate order of magnitude 
of the circumferential surface force which later has been found to be small and 
can be neglected in most cases. The flow rate Q can be obtained as 

where C, is the coefficient of contraction. Substituting ( 2 b )  into (l), and solving 

The last term of (3) comes from the contribution of circumferential surface 
force. Unless the Weber number is of the order of magnitude 10 or less, the last 
term of (1) can be neglected. Then (3) becomes 

Equation (4a )  can also be written as 

which is also obtained by Bond (1935). 

T. Hsieh (private communication), then C, = 0.67. Equation (4a) becomes 
If we take the average value of C, obtained under low-pressure head by 

_ - _ -  - rb - 0.167 We. 
i d  i d  

Equation ( 4 c )  plotted in figure 2 shows agreement with the experimental data 
of regime I. We may call this regime the Savart-Bond regime. 

When the liquid arrives at  the edge, surface-tension force balances the inertia 
force, as if the liquid has reached a stagnation point. Actually, the liquid is 
continually flowing into and swelling the beads. A semicylindrical shape might 
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be assumed along the periphery of the sheet. Small disturbances in the radial 
direction will roughen the smooth cylindrical edge. If we assume that the classical 
Rayleigh jet instability mechanism prevails along the periphery, then the size 
of the beads should be in the same order of magnitude of A,,,, the optimum 
wavelength which corresponds to the maximum growth rate of the instability. 
Rayleigh’s formula on A,,, can be then written as A,,, = 2/27rh,. In the case 
of figure 3 (a ) ,  h, N 0.00052 in. and A,,, N 0.00232 in. 

The smallest bead interval which can be measured from figure 3 (a) is approxi- 
mately 0.0061 in. and is two and one-half times the value obtained from the 
predicted value A,,,. Thus, the measured datum does give the right magnitude 
in comparison with the predicted value. Because h, is verysmall, we could assume 
that equally spaced small beads originally existed, but, since they are continually 
merging, no equally spaced beads can be observed. Therefore, the sizes of the 
beads are several times larger than the predicted spacing A,,,. From observations 
of the enlarged photograph in figure 3 (c) and the high-speed motion pictures, 
it is found that the droplets are formed when the liquid beads merge to form 
larger beads which eventually detach from the semicylindrical periphery. It 
is worth noting that a droplet is not a single Rayleigh’s ‘cylindrical bead’, 
but the droplet actually results from the ‘successive merging’ of the many 
beads along the priphery. 

Such a successive merging process has been observed by Lienhard & Wong 
(1963) for the case of vapour departure from small heated wires. Lienhard & 
Wong’s prediction of A,,, (Rayleigh’s A,,, plus gravitational effects) agrees 
very well with their measurements of the bubble spacing along the cylindrical 
heater when the heater diameter lies between 0.05 to 0.002 in. The bubbles 
become less evenly distributed when the diameter of the heater reduces in size. In 
one case, when the heater diameter is 0.001 in., they find that the wave behaviour 
is obscured by bubble mergings and ‘oversized’ bubbles depart from the heater. 

This successive merging process could be of importance for the study of a 
drop formation from thin liquid films or from liquid jets of non-Newtonian 
fluids .t 

(ii) Transition regime 

When the Weber number of the liquid sheets goes beyond regime I, some small 
disturbances originate at  the colliding point of the two jets. These disturbances 
initiated at  the centre of the circular sheet propagate throughout the entire 
sheet. The cusp-shaped edge of the liquid sheet results from the presence of 
these disturbances and follows a more or less regular pattern. These small dis- 
turbances also exist in the first break-up regime, but usually they are too small 
to prevail, so the sheet appears to be nearly circular. Occasionally the cusp- 
shaped edge is visible in the first break-up regime. 

Taylor (1959) very cleverly analyzed the small disturbances on liquid sheets 
when the sheets have constant velocity U .  He concluded that, in the case of a 
sheet with a constant thickness h, a small disturbance on the sheet forms two 

t An exaggerated example of the merging process can be seen in Goldin, Ycrushalmi, 
Pfeffer & Shinnar (1969), in which the merging mechanism of beads along a viscoelastic 
jet is shown clearly in a sequence of high-speed motion pictures. 
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straight lines with angle sin-l( 2v/ph Uz)& between them. His experiment confirmed 
his theory. In  the case of a circular expanding liquid sheet, a small disturbance 
in the centre of the sheet forms two cardioidal wave lines. These cardioidal wave 
lines are represented, in polar co-ordinates ( r ,  0) )  by 

where R is the maximum possible radius, defined in (4 b) ,  and 8, is a constant intro- 
duced by integration, which represents the angular position measured from an 
arbitrary zero. 

Taylor made the following experiment to confirm his analysis in the case of a 
circular expanding sheet : he allowed a jet directed vertically upwards to impinge 
on an impactor which had eight equally spaced radial nicks on its surface. A 
metal ring with its diameter smaller than the sheet was placed so that it inter- 
cepted the fluid before it reached the free edge. The resulting circular sheet had 
eight cardioid waves on the surface. These eight cardioid waves coincided with 
eight cardioid waves drawn from (5). Taylor did not go on further to observe the 
ragged edge which he had eliminated with the metal ring. 

We believed that, in the first half of the transition regime, small disturbances 
initiated at  the point of collision created many cardioid waves throughout the 
sheet. Such disturbances are usually so small that no cardioid waves on the 
surface are visible until the liquid reaches the edge. This edge follows the cardioid 
wave pattern as can be seen in the following experiment : 

The liquid sheet in figure 4 (plate 4) is formed by the collision of two & in. 
diameter jets at  We = 640. The maximum radius R calculated from (4c) is 
8.49 in. We use (5) to draw the 16 cardioid waves on the photograph. The cusp 
edge of the sheet generally coincides with the curves. How many cardioid waves 
exist on the surface is unknown. We may conclude that if we drew more cardioid 
wave lines on the surface, all the cusp edges will coincide with an appropriate 
cardioid wave line. The liquid beads merge along the cardioid wave lines tending 
toward the outer cusp points. This tendency of the beads to merge might have 
resulted from the radially flowing liquid pushing the merging beads outward. 
(Refer to figures 3 (b)  and 3 (c) .) 

In the first half of the transition regime, the ragged periphery is generally 
close to R, with some discrepancy which results from the existence of the cardioid 
waves. The data for We = 500 to 800 in figure 2, show a small deviation from 
the predicted (4  c). 

When the characteristic break-up curve reaches its critical zone, which lies 
approximately between the Weber numbers 800 to 1000, liquid sheets generally 
are stable but are sensitive to any perturbation. No distinct cardioid wave edge 
can be observed. When the Weber number exceeds that of the critical zone, 
liquid sheets become slightly unstable. Antisymmetric waves propagate radially 
with growing amplitude. In  the second half of the transition regime (We 21 103 
to 2 x 1 0 3 ) )  the wave behaviour is the same as that in the second break-up regime, 
but is less pronounced. 
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(iii) Second break-up regime 

When the Weber number exceeds approximately 2000, the liquid sheet is dis- 
tinctly unstable. Observations by high-speed photography have shown that 
the upper and lower interfaces of the liquid sheet are so close that the sheet seem- 
ingly oscillates like a membrane. If we neglect the details of the liquid flow 
between the two interfaces of the sheet, we may assume that the flag-like wave 
motion of the liquid sheet is analogous to that of a moving vibrating membrane. 
Under this assumption, we have studied the two-dimensional constant-thickness 
membrane motion. 

When the displacement ofthe membraneis assumed to be 7 = aexp[i(kx - wt ) ] ,  
where a is the maximum deviation from the unperturbed membrane, k is the wave- 
number, w is the angular frequency, x is the co-ordinate of the membrane moving 
direction and t is the time. The derivations of this linear wave motion are straight- 
forward, and are given in Huang (1967). The results are reported as follows: 

2a 4ap, 2pau2 -+--- 
ph p2h2k phk 

'Pa 
w =  

+phk 

where Amax and k,,, are, respectively, the wavelength and the wave-number for 
maximum instability, wilmax is the maximum growth rate of unstable waves, 
pa is the density of the ambient air and h is the thickness of the sheet. When 
pU2h/a 9 1, (4) and (8) can be approximated as 

The above two relations were also obtained in Squire (1953), where the velocity 
potential between two interfaces of the sheet is considered. Two different ap- 
proaches giving the same result might indicate that it is legitimate to neglect 
the details of the liquid movement between two interfaces of thin liquid sheets. 

The prediction of the break-up length of axisymmetric liquid sheets will be 
drawn from the analogy of the prediction of the break-up length of cylindrical jets 
(e.g. Weber 1931). The magnitude of the disturbance of unstable waves is simply 

I?] = aeoit. (10) 

The break-up distance rb can now be approximated as 

The parameter c1 in ( l l ) ,  following (9), is 1n(vb/a). The subscript b indicates 
variables a t  the break-up point. Weber in his study of the break-up mechanism 
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of cylindrical jets reported ln(q,/a) = 12, a value which has been accepted by 
some later investigators. Ostrach & Koestel (1965), who studied the break-up 
length of annular liquid film inside ducts, and Praser et al., who studied the 
drop size formed from the fan spray sheet, all decided that In (qb/u) = 12 is a 
universal constant, and can be applied in any geometrical configuration. Grant 
& Middleman (1966) reported on the instability of Newtonian jets, however, and 
revealed that In (q,/a) is not a constant value, but a function of the Weber number 
and Reynolds number, and has to be determined experimentally in every case. 

The huge value of the ratio (?,/a) seems to defy any physical interpretation. 
We would just conclude that r, is proportional to U and inversely proportional to 
witmax. The constant c1 has to be determined from experiments. 

By substituting (96) into (l l) ,  and letting h = h, = Ccdz/4r,, we obtain 

At laboratory room temperature, 71 O F ,  the air density pa = 0.00234 lbm/ft3. 
The density of the supply water is 1.94 lbm/ft3. In this case the density ratio 
pT = p,/p = 1/830. When we take the average value of C, for the higher Weber 
number from Hsieh, C, N 0.65. If we choose c1 = 33, we find that (12) agrees 
very well with the experimental data. By substituting all above quantities into 
(12), a semi-empirical formula can be written 

(13a,b) 
‘b ‘b - = 14*2p$We-+, or - = 1250 We-f. 
Qd i d  

Equation (13b) plotted on figure 2 agrees well with the measured break-up 
radii at the break-up regime 11, and shows a small deviation from the data in 
the second half of the transition regime. 

Ostrach & Koestel have also developed an equation t o  predict the break-up 
of liquid film at  high Weber’s number. Their result can be rewritten as 

‘b 
- = (1-3 x lo6) We-l. 
ad 

If we plot (14) in figure 2, we can see that, within the limits of the pressure head 
in the present experiment, (14) does not agree with our data, 

4. Effects of cylindrical geometry on wave motion 
The cylindrical geometry apparently has its effect in the propagation of anti- 

symmetric waves on the sheet. In $4, we shall attempt to analyze the motion of 
the axisymmetric membrane with decreasing thickness as an analogue to the 
wave motion of circular expanding liquid sheets. 

The liquid mass at  each radial distance is conserved. We can, therefore, treat 
the decreasing thickness of the liquid sheet as radially decreasing density. Then 
the equation of motion is 

p- YE __ = 2g  az9 -+-- 1 a? -2p,- a# at z = 0, ( 7 )  at2 jar2 r ar) at 



314 J .  C .  P. Huang 

where ro = JC,# is the radius of the jets a t  the colliding point, $ is the velocity 
potential of the surrounding gas, z is the co-ordinate in the membrane displace- 
ment direction, and d2/dt2 on the left side of (15) is the total derivative. 

It is unlikely that we can simultaneously solve (15), the kinematic condition 
aq/at = - a@/az a t  z = 0, and the Laplace equation? of $in cylindrical co-ordinates, 
as we have done in the case of two-dimensional, constant-thickness sheet. How- 
ever, the displacement of the liquid sheet, rather than the surrounding gas, 
is the object of our interest. If we can find a proper expression for @in terms of 7, 
and substitute this expression into (15), then we shall be able to solve for the dis- 
placement 7 explicitly, and interpret the behaviour of the solution. 

where k' is a decay factor. In  two-dimensional analysis, the decay factor k' 
is independent of x and t ;  but, in a cylindrical co-ordinate problem, k' can be a 
slowly varying function ofr. For simplicity, we shall assume that k' is independent 
of r and t. Applying (16), and the kinematic boundary condition, we can eliminate 
4 in (15). Also, by introducing the non-dimensional variables, 

and the non-dimensional parameters, 

To determine the parameter p, we ought to be able to determine k'. Since we 
cannot evaluate k' directly in the cylindrical configuration, we would like to 
approximate I%'. In the case of the two-dimensional, constant-thickness Ijquid 
sheet, the decay factor of the perturbation on the surrounding gas k' is the same 
as the wave-number k .  From (7),  we have found that k,,, 2: pa U2/2u is the 
wave-number a t  the maximum growth rate. To be able to solve (19), which in 
turn can provide some knowledge of the wave behaviour due to the effect of 
cylindrical geometry when the liquid sheet is in the unstable regime 11, we shall 
assume that 

8 
- 2a. 

When the liquid sheet is in the unstable regime 11, the range of We is of the order 
of magnitude lo3 to lo4; therefore, both a andb are of the same order of magnitude 
and both are much less than one. 

The coefficients of the differential equation (19) are independent of time. We 
can, therefore, assume 

V ( X ,  r )  = @(X)exp( - iwr), (21) 

t This is the classical Kelvin-Helmholtz model (see e.g. Miles 1957). 
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where the dimensionless angular frequency is = ( ro/U)w.  By substituting (20) 
and (21) into (19), and again by using the transformation, 

we can transform (19) into d2Z 
__- wzaxz = 0. 
dX2 

The dimensionless displacement function can then be approximated as 

(24) 
- 
r (X,  7 )  = c2Z(X) exp{iG(X - T)}, 

where c,is a constant. Equations (23) and (24) are obtained when terms of smaller 
order of magnitude have been neglected. 

The solution of (23) is simply an Airy function. However, when the liquid 
sheet is unstable, 5 possesses both a real and an imaginary part. The behaviour 
of the Airy function for a complex argument is complicated. We therefore have 
applied the WKBJ (Wentzel, Kramers, Brillouin and Jeffreys) method (see, for 
example, Mathews & Walker 1964, p. 26)) to give the following approximate 

(25) 
solution : 

Z(X) 1: X-*{a,exp( - @.\laX*) + blexp (@ .\lax%)}. 
Combining (24) and (25)) we have thus found an approximation to the general 
solution of the displacement 5: 

?j(X,7) = X-*(a,exp( -+G.\laX$) +blexp($is.\la X$))exp{iG(X-7)}, (26) 

where c2 has been absorbed into constants a1 and b,. Equation (26) is true in any 
region where X is greater than 40. Our experimental observations indicate that 
in the break-up regime 11, antisymmetric waves are pronounced only ab approxi- 
mately X > 40. Hence, (26) is an acceptable approximation. 

In  this unstable break-up regime 11, W is complex. The outgoing wave can then 
be represented by setting is = G, + iGi, and rewriting (26) as 

?f (X,  7 )  = b, X-4 exp(8, + i0,), 

where 0, = @,,/aX$--z;iiX-?i&r, 0, = @i,/aX%+is,X--Tj,r. (28) 

(27) 

Equation (27) is a distorted progressive wave solution, indicating that the wave 
amplitude will grow exponentially along the radial direction. 

The wave speed can be obtained by differentiating 8, with respect to 7 and 
setting the result equal to zero 

Then the wave speed, c = dr/dt + U dX/dr, is 

We do not know the values of Wi and 75,; generally isi is less than is,. In the pre- 
vious analysis of wave motion on constant thickness sheets, we have obtained 
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two formulas for w, and Gi in (6). The ratio of Z@ir, in that case, has been found 
to be approximately 0.9 for We in 0(103) and 0.3 for We in O(104). To acquire 
some idea of how the wave speed changes along the radial direction, we shall 
assume Gilar E 1 and set (29) as 

The following experimental data will be presented here to be compared with 
the approximate expression of (30). The wave speed for the region, from the first 
visible wave-front to the edge, was measured from the top view high-speed 
motion pictures, while the pictures were projected in a microfilm reader. The 
distance travelled by the wave-front, plotted against the consecutive frames 
of the high-speed motion pictures forms a time-displacement diagram. The 
slopes of the curve which connects all the data points are the speeds of the wave 
at each specific radial position. The wave speeds, in the case of the Weber numbers 
2250, 4450, 7210, 10 300 and 16 000, against the dimensionless radial direction, 
r / ( ; d ) ,  are plotted in figure 5. In each motion picture, three data lines are taken 
from three different portions of the 100-foot-long motion film. The uncertainty 
on the initial and the final data lines denotes the several possible curves of different 
slopes which can be drawn through the time-displacement diagram. 

The wave speed equation (30) has been plotted as a dash-dot line in figure 5. 
We see that (30) represents fairly well the terminal velocity of low We (figures 
5(a )  and ( b ) )  while the wave is still linear. When We is very high (figures 5(c), 
( d )  and ( e ) ) ,  the non-linear wave mechanism predominates on these flapping 
sheets. The present linear wave theory is no longer valid. 

One interesting point should be noted here. If we superpose the velocity of the 
liquid sheet, U ,  on the speed of sound, (2c~/p')*, obtained from the classical 
analysis of the vibrating membrane, then the absolute wave speed is simply 
U & (2cr/p')&. When we substitute p' = p(Ccd2/4r), and take the minus sign of 
the above equation, we obtain the same wave speed equation as in (30). This 
may indicate that, at the condition when Gi = W,, effects of cylindrical geometry 
on wave motion are related only to the radially decreasing liquid sheet thickness. 

5. Concluding remarks 
The major results of this investigation are presented in figure 2 where the three 

break-up regimes and the dynamic behaviour in each regime are concisely 
reported. The shape of the characteristic break-up curve of the liquid sheet is 
similar to that of the break-up curve of the cylindrical jet. 

We believe that for every liquid, axisymmetric sheets have a break-up curve, 
the shape of which is similar to that of the break-up curve of water sheets in figure 
2 .  Knowing the transition regime of the characteristic break-up curve, we will 
be able to determine the conditions for producing a stable sheet or an unstable 
sheet of a particular liquid. For some applications, such as film coating, a stable 
sheet is required, whereas for others, such as spraying, an unstable sheet is 
preferred. 
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The present linear wave theory does not completely interpret the wave be- 
haviour of the liquid sheet. The non-linear, shallow-water wave theory, or the 
non-linear vibrating membrane theory, may indicate a new approach to the 
understanding of the steep wave front behaviour of the thin liquid sheet in 
the high Weber number regime. 

I am grateful to Professor J. N. Lienhard for calling my attention to the dis- 
tinction between a single Rayleigh ‘cylindrical bead’ and a droplet resulting 
from ‘successive merging’. I am thankful to Professors Lienhard and S. C. 
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Lowell for the stimulating discussions throughout this study. Mr H. D. Howard 
helped to obtain the informative photographs. This work was largely supported 
by the Research Center of the College of Agriculture, Washington State Univer- 
sity. 
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FIGURE 3 (a)-(c). For legend see plate 3. 
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FIGURE 3 ( d ) - ( j ) .  For legend see facing page. 

Plate 2 
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FIGIJRE 3. Top view of water sheets formed by the co-axial collision of two equal-diameter 
jets under various pressure heads. (a) We = 360; (b) 580; (c) 580; ( d )  890; (e) 1060; 
(f) 2080; (9) 4450; (h) 8450; ( i )  31400. 
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FIGURE 4. Cardioid waves at the edge of a sheet compared with drawn cardioid wuvcs. 
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